
I

AD-A242 671

NAVAL POSTGRADUATE SCHOOL
Monterey, California '1iC

.V7'C R A 1W%

THESIS

THE IMPACT OF VERBAL REPORT PROTOCOL
ANALYSIS ON A MODEL OF HUMAN-COMPUTER

INTERFACE COGNITIVE PROCESSING

by

Barbara L. Treharne

March 1991

Thesis Advisor: Kishore Sengupta

Approved for public release; distribution is unlimited.

91-16031

Unclassified
SECURITY CLASSIFCATION OF THIS PAGE

Form Appro ed

REPORT DOCUMENTATION PAGE o,18 No 0704o188

la REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKNGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTR.BUT.ON AVA:LAB:L Ty O REPOP-

Multiple Sources Approved for public release; distribution
2b DECLASSIFICATION /DOWNGRADING SCHEDULE is unlimited.

(OADR)
4 PERFORMING ORGANIZATION REPORT NUMBER(S, 5 IUNG ORGANZATON REPORT NVB .,

6a NAME OF PERFORMING ORGANIZAT;ON 6o OFFCE SYMBOL 7a NAME OF MON;7TORING ORGAN 7A7 O%
(If applicable)

Naval Postgraduate School 367 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING /SPONSOR:NG 8b OFFCE SYMBOL 9 PROCUREMENT INSTRUMENT IDEVT1FiCAT1ON % BE
p

ORGANIZATION (If applicable)

8c ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FuND NG NUMBERS
PROGRAM PROjECT

T
ASK 'OPK uNiT

ELEMENT NO NO NO :,CCESSiON NO

1 TITLE (Include Security Classification)

THE IMPACT OF VERBAL REPORT PROTOCOL ANALYSIS ON A MODEL OF HUMAN-COMPUTER INTERFACE
COGNITIVE PROCESSING

72 PERSONAL AUTHOR(S)

Treharne, Barbara L.
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year. Month, Day) 15 PAGE C0,N

Master's Thesis FROM_ TO March 1991 104
16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and identify by block number)

FIELD GROUP SUB-GROUP Human-Computer Interaction, User Interface, Cognitive

Complexity, Verbal Protocols

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This exploratory study used the "think-aloud" protocol to demonstrate the effectiveness of
Kieras and Polson's Goals, Operators, Methods and Selection Rules and the Cognitive
Complexity Model. An experiment comparing the cognitive processes of users on two file
management interfaces, a Command Language and Direct Manipulation interface, was con-
ducted. The think-aloud process was chosen as the methodology for conducting this experi-
ment because of its insights into the user's perceptions of both the task and device
representations. The experimental results provide implications for the study of cognitive
processes--the nature of the interface design influences the users' mental models of a
system, which has a direct affect on the users' performance on a given interface. This
methodology also provides an evaluation technique which may improve the design process of
the user interfaces. Finally, the results support the think-aloud protocol as an effect-
ive evaluation tool of user interface designs.

20 DISTRIBUTIONj/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASS;FfCATION

)PUNCLASSIFIED/UNLIMITED 0l SAME AS RPT E3 DTIC USER, Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include AreaCoce) 22(O"'CE S

Kishore Sengupta (408) 646-3212 AS-SE

DD Form 1473, JUN 86 Pev,oused,tronsare obiolete SECUR Y CiAlSS CAT (.. , , . 2

S,'N 0102-LF-014-6603 Unclassified

i

Approved for public release; distribution is unlimited.

The Impact of Verbal Report Protocol Analysis on a
Model of Human-Computer Interface Cognitive Processing

by

Barbara Lynn Treharne
Captain, United States Army

B.S., United States Military Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTERS OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1991

Author: -tL -4 4
Barbara Lynn Treharne

Approved by: L \ S V
-Kishore--____te he is Advisor

Tung BUi, Secohd Reader

David R. i le,,,tairman,
Department of Adminis Sciences

ABSTRACT

This exploratory study used the "think-aloud" protocol to

demonstrate the effectiveness of Kieras and Polson's Goals,

Operators, Methods and Selection Rules and the Cognitive

Complexity Model. An experiment comparing the cognitive

processes of users on two file management interfaces, a

Command Language and Direct Manipulation interface, was

conducted. The think-aloud process was chosen as the method-

ology for conducting this experiment because of its insights

into the users' perceptions of both the task and device

representations. The experimental results provide implica-

tions for the study of cognitive processes--the nature of the

interface design influences the users' mental models of a

system, which has a direct affect on the user's performance on

a given interface. This methodology also provides an

evaluation technique which may improve the design process of

the user interfaces. Finally, the results support the think-

aloud protocol as an effective evaluation tool of user

interface designs. 4---

AcuaQe For

I* Tab. f7

sy~

A vail ~ t 'o

- or --

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. USER INTERFACES 2

C. GOAL OF STUDY 5

II. THEORETICAL PREMISES 6

A. USER COMPLEXITY 6

B. COGNITIVE COMPLEXITY AND THE GOMS MODEL 6

C. THINK-ALOUD PROTOCOL 13

D. COGNITIVE COMPLEXITY AND USER INTERFACES 16

III. RESEARCH METHODOLOGY 20

A. INTERFACE DESCRIPTION 20

1. Command Language Interface 21

2. Direct Manipulation Interface 23

B. EXPERIMENTAL DESIGN 29

C. SELECTED TASKS 31

D. PARTICIPANTS 34

E. EXPERIMENTAL ENVIRONMENT 35

F. ANALYSIS OF DATA 36

IV. DATA ANALYSIS 52

-A. METHOD/SAMPLE SIZE 52

B. RESULTS 53

1. Number of Production Rules 54

Iv

2. Complexity of Rules.............54

3. Task-To-Device Mapping...........54

4. Number of Unnecessary Steps..........54

C. IMPLICATIONS OF RESULTS..............54

1. Affects on Mental Models...........55

2. Affects of User Performance..........56

3. Affects of Systems Design 58

4. Affects on Think-Aloud Methodology 59

V. SUMMARY.........................61

LIST OF REFERENCES.....................64

BIBLIOGRAPHY........................66

APPENDIX A.........................69

APPENDIX B.........................81

INITIAL DISTRIBUTION LIST..................97

V

I. INTRODUCTION

A. BACKGROUND

Despite the growth in computer technology in today's

society, the potential for computer productivity and effec-

tiveness has not been reached. A primary reason for this is

that human-computer interfaces are not designed to be

compatible with the way in which people think--many still

experience fear and anxiety when required to interact with a

computer, resulting in their inability to learn the system and

unnecessary errors during usage [Ref. 1:pp 351]. The purpose

of this thesis is to provide new insights into cognitive

processes of users when interacting with computers. Ultimate-

ly, this knowledge can be applied by designers to make systems

more usable by altering the behavior of the device, and thus

matching its behavior to the user's cognitive process of task

accomplishment (Ref. 2:pp 365). The designer can increase

usability in several ways, such as reducing the complexity of

task structures (Ref. 2:pp 366) or applying the acquired

knowledge to the generation of training material or reference

documentation.

Currently, there exists a number of models which theo-

rize, from different aspects, the cognitive processes which a

user undergoes while performing certain types of tasks through

1

interaction with the computer system. Two of the more

prominent models are the Goals, Operators, Methods and

Selection Rules and the Cognitivity Complexity Model.

These model theories have been developed based upon

various methods of experimentation--such as, analysis of

keystrokes, user logs, error analysis, retrospective verbal

reports, questionnaires, and, rarely, using the concurrent

verbal reporting "think aloud" methodology. All of these

sources of data are required to complete the "big picture" of

user-interfa e cognitive processing. Therefore, the results

of each methodology must be fully integrated with existing

theories of cognitive models. Currently, there is

insufficient research in the area of verbal protocol analysis.

In order to gain consistency, validity and full integration of

experimentation results, more studies/experimentation

conducted using verbalization protocols must be completed.

This thesis will assist in correcting this gap in resear n by

providing an experiment using verbal -rotocol analysis in

order to model users' cognitive processes.

B. USER INTERFACES

While there are a number of user interface styles

available today, the two most common are the Command Language

interfaces and the Direct Manipulation interfaces. These

interfaces are described in general below.

2

Command Language Interfaces require the user to

communicate with the computer by typing a formal language,

using a specific syntax. The user in required to learn and

memorize the commands and the sequences needed to complete an

operation within a given task [Ref. 3:pp 154].

Direct Manipulation Interfaces enable the user to

communicate with the computer, and thus control activities,

through direct action on visible objects rather than by the

use of a procedural language. The user is provided a

continuous representation of the objects and actions of

interest, while allowing the user to execute the command

through actions such as movement and selection (performed by

pointing and clicking) of objects with the mouse of joystick

[Ref. 3:p. 154].

To date, numerous studies and experiments have been

conducted in attempts at comparing the two interfaces.

Margono and Shneiderman conducted an experiment which compared

the file manipulation operations on the Apple Macintosh, a

Direct Manipulation interface, and the IBM PC with MS-DOS,

which uses the Command Language interface [Ref 3:pp 154].

This 1987 experiment measured the mean times and error rates

of the subjects. It concluded that the Apple Macintosh was

more user friendly--because it is easier to learn and use due

to only modest memorization requirements and because it takes

less time to perform tasks on the Macintosh due to the

3

elimination of typing with the mouse and pull-down menus.

Karat, Fowler, and Gravelle conducted a study to examine

learning and performance differences between a Command

Language and a Direct Manipulation interface [Ref. 4:pp 489].

This study measured the performances of novice users tasked to

perform routine file management operations on each of the two

interfaces. It substantiated the ease of use and learning of

the prototype Direct Manipulation language. However, it was

not able to make accurate predictions from the production

system models generated to lend support to the GOMS model.

This failure was seen as a failure to encompass error recovery

behavior into the GOMS approach, not as a complete

condemnation of the GOMS framework. In Te'eni (1990),

experimental subjects were broken down into three groups--one

with no feedback, one with traditional dialogue feedback, and

one with visual Direct Manipulation feedback--and given two

complex tasks of providing input to the final course grade.

The groups were measured by mean performance times and logical

error rates. This study demonstrated that feedback resulting

from Direct Manipulation is more effective and time efficient

than the distance form of feedback in conditions of high

complexity [Ref. 5:p. 1-25].

4

C. GOAL OF STUDY

This thesis involved conducting an experiment in which

users performed a set of complex tasks while interacting with

the two separate computer interfaces--the Direct Manipulation

and Command Language interfaces. The experiment involved

recording the users as they "think aloud" throughout the

performance of routine tasks, which required direct interac-

tion with the human-computer interface of a file management

system. The users verbalized their thought processes

concurrently with the performance of the task. By doing so,

the user described information required to perform the task.

It not only traced the actions of the users, but indicated why

each action was taken. This "why" information fills a void

left by other experimentation methodologies by providing a

direct insight into the user's true perceptions of the task

and device representation [Ref. 6:pp 3-4]. These verbaliza-

tions and the corresponding user logs of the user interaction

with the computer are then transcribed and analyzed with

respect to the premises of the GOMS and Cognitive Complexity

models.

5

II. THEORETICAL PREMISE

A. USER COMPLEXITY

The complexity of user interfaces involves the complexity

of the entire interface system from the user's perspective

[Ref. 2:pp 365]. It pertains to the complexity of the device

itself, the tasks being performed, and the difficulty of

learning to operate the device. In order to significantly

reduce the complexity of any of the above components of a user

interface, a designer must have a basis for an aralysis and

determination of the relative complexity of the user's

operating environment. The purpose of this research is to

further the knowledge of interface designers by providing

evidence that continues to support the use of the GOMS and

Cognitive Complexity models as theories to measure and reduce

the complexity of user interfaces.

B. COGNITIVE COMPLEXITY AND THE GOMS MODEL

The Cognitive Complexity Theory and GOMS model

incorporate the user's representation of the task to be

performed, the user's representation of the device used to

operate and perform the task, and the relationship between the

task and the device in order to quantify the amount and

complexity of knowledge required in operating a system. Each

6

of these components is vital to the full understanding and

development of human-computer interface activities that are

easy to use, efficient, and error-free.

The GOMS Model prefaces its framework on the user's

mental information processing capabilities by describing a

Model Human Information Processor. This processor consists of

three interacting subsystems which work together to delineate

the user's mental procedures for performing a single action.

These three subsystems are: the perceptual system, the

cognitive system, and the motor system. The perceptual system

carries sensations of the physical world detected by the

body's sensory systems into internal representations of the

mind [Ref. 7:pp 25]. The cognitive system then connects

inputs from the perceptual system to the right outputs of the

motor system [Ref. 7 :pp 35]. Within the perceptual system,

there are two important types of memory--working and long-term

memory. Long-term memory consists of a body of knowledge,

gained through repeated associations with that knowledge, that

is stored in a network of related chunks of memory. Working

memory is the activated portion of long-term memory which

responds to the input detected by the perceptual system. An

important aspect of the cognitive system is the recognize-act

cycle which similates the fetch-execute cycle of familiar

computer operations. Once recognized, the contents of working

memory initiate actions associatively linked with them in

7

long-term memory; these actions, in turn, modify the contents

of the working memory, ultimately resulting in the requirement

of an output [Ref. 7:pp 27-39]. Thought is transferred to

actions--actions such as performed by the head-eye system and

the arm-hand-finger system--through this iterative process of

recognize-act cycles. These actions are controlled by the

motor system [Ref. 7: pp 34]. Within this specific architec-

ture, each component system is assigned parameters, such as

cycle time or storage capacity, used in the derivation of

predictive models for cognitive complexity measurements.

To further amplify this model and to elicit more direct

correlation between the user's mental model and the relative

complexity of the user's cognitive process, the family of

models known as the GOMS model was developed. This model is

based upon the "rationality principle" which states that a

person attempts to achieve goals by doing those things that

the task itself requires to be done [Ref. 7:pp 86]. The model

further assumes that behavior can be described as a sequence

of a small number of information-processing "operators" which

can be both described and timed. Based upon the validity of

the rationality principle and the existence of such operators,

it is feasible then to predict the sequence in which the

operators will be performed [Ref. 7:pp 139]. These operations

and their sequences are performed in alternating iterations of

the recognize-act cycles of the cognitive system within the

8

Model Human Information Processor. By knowing this sequence,

and thereby knowing the number of operations and production

rules required to perform a given goal, or task, it will

consequently determine the relative complexity of that goal.

The GOMS model consists of the following components: a

set of goals, operators, methods for achieving those goals,

and selection rules for choosing the method to be used. The

premise of the model is that goals are performed in a hierar-

chial manner in accordance with the rationality principle.

The goal structure can be considered the plan for carrying out

the completed task. The operations are mental representations

of elementary functions that the device can perform. Methods

are learned procedures that the user already has at perfor-

mance time, i.e., a skill, and that are needed to satisfy a

specific goal or subgoal--it can be as simple as a single

keystroke, or as complex as a complete set of subgoals and

operations necessary to meet its higher level goal. The

selection rules specify which methods should be used to

satisfy a given goal and can be correlated to a condition-

action (if-then) pair [Ref. 2:pp 366].

The GOMS model relates directly to the user's task

representation--it is through knowledge of the task that the

user must establish goals, methods, selection rules, and

operations necessary for the performance of any given task.

The job-task environment can be viewed through a production

9

system which is based upon the theory that mental processes,

or behavior, can be represented as a set of specific response

actions, each made in response to a particular stimulus

condition--i.e., a condition-action pair as seen as a selec-

tion rule within the GOMS model [Ref. , 2:pp 369]. The

production system is composed of a collection of production

rules (selection rules) and a working memory. Within working

memory, there exists representations of the system's current

goals, information about the status of current and past

actions, and representations of inputs from the environment

[Ref. 2:pp 369]. The production systems operate in

alternating states of the recognize-act mode. During the

recognize mode, the conditions of all the productions are

tested against the contents of working memory. When a

condition is satisfied, the system goes into the act mode to

execute the operations. The contents of working memory are

modified at this stage and the system then returns to the

recognize state where more conditions may be satisfied upon

the updated working memory [Ref. 2:pp 369]. The theory states

that the complexity of the task corresponds directly with the

number of production rules that must be acted upon to perform

a given task. Therefore, by counting the number of production

rules executed, the complexity of any given task may be

quantified.

10

Inherent in defining the complexity of the entire job-

task environment is the user's model of the device which must

be considered along with the job-task representation. A

user's device model is the person's understanding of the

internal structure and functions of a device--this is often

referred to as "how-it-works" knowledge and has effects on a

user's ability of learn and operate a device [Ref. 2:pp 377].

The device representation must characterize the interaction

between the user and the device and, subsequently, an explicit

and formal representation of the device itself is needed. To

do so, this model utilizes the general transition network

(GTN), consisting of nodes, which represent states, intercon-

nected by arcs, which represent possible transitions between

states. An arc may consist of a condition-action pair and a

specified next state. Nesting, which allows one GTN to call

another in a manner similar to subroutine calls in ordinary

programming languages, can appear in three places: in

conditions, in actions, and in states [Ref. 2:pp 381-383].

Each function performed by a device must be adequately

portrayed in a GTN, demonstrating the necessary operations to

be formed and the hierarchy of transitions to be executed in

sequence.

Once the device representation GTN and the GOMS model/

production system goal structure are defined, the relationship

between the characteristics of the user's task and the device

11

being used in the task may be established. The hypothesis is

that a good task-to-device mapping is one in which the goal

structure and the device structure graph correspond--thus

facilitating ease of learning and operations [Ref. 2:pp 387].

An analysis of a mapping in which there did not exist a

correspondence between the GTN and the goal structure graph

can be used to improve the overall interface--by either

altering the device itself to correspond with the user's goal

structure or possibly altering the documentation of "how-it-

works" knowledge can be provided to alter the user's goal

structure [Ref. 2:pp 390].

This model provides a formal architecture for analysis of

human-computer interfaces. The model addresses the user's

mental model, the user's representation of the task, the

device model representation, and the relationship between the

task and the device on which the task will be performed.

There are numerous studies which have been conducted

which offer support for the Cognitive Complexity and GOMS

model. Three studies demonstrating the most direct correla-

tion between the theory and the experimental results are

addressed here. In 1984, Kieras and Bovair used this theory

to analyze the results of a transfer of learning study in

which users learned to operate a control device through

written instructions. The experiment demonstrated that the

production rule representation accurately predicted the

12

relative difficulty of a set of related procedures [Ref. 8:pp

507-524]. Similarly, Polson and Kieras successfully predicted

learning, transfer and execution times of text editing tasks

based upon the number of recognize-act cycles required to

perform tasks in their 1985 experiment, "A Quantitative Model

of the Learning and Performance of Text Editing Knowledge."

[Ref. 9:pp 207-212] Finally in 1990, Bovair, Kieras, and

Polson used production rule models to make quantitative

predictions for both ease of learning and ease of use. A

production rule model was developed tar a simulated text

editor. The model was then evaluated--by comparing its'

prediction of learning and execution times with the actual

experimental data. The production rule model successfully

predicted both learning and execution times, thus providing

strong support for the Cognitive Complexity Theory [Ref. 10:pp

1-48].

C. THINK-ALOUD PROTOCOL

In order to facilitate a complete understanding of the

implications of the user-interface decision, a complete

picture of the human-computer interaction must be acquired.

This can only be accomplished if all of the design factors--

experience of designers, current trends of input/output

technology, ergonomics (human-factors) research, cognitive

psychology, and evaluation of working systems--are considered

13

and integrated into the formulation of well-designed computer

interfaces. Reducing the cognitive complexity of user

interfaces is essential to achieving the final g;al [Ref.

11:pp !].

The think aloud protocol is a method for studying mental

processes which reflects the user's perception of task and

device representations. It provides concurrent, spoken

comments as participants work through a task. This type

protocol is a record of the natural use of software and its

aim is to get users to identify problems by explaining what

they are trying to do, and why, as well as what problems they

are having while doing it. The verbalized protocol is later

transcribed and analyzed to provide specific feedback of

critical instances of behavior [Ref. l1:pp 18].

Much of current research relies on evaluating interfaces

and determining cognitive complexity by evaluating the

execution times of task performance, as well as by identifying

number and type errors committed. The think aloud protocol

supplements this other research of cognitive complexity by

providing the reason why specific problem areas/errors are

occurring. Key advantages of using the think-aloud methodolo-

gy is that it quickly pinpoints problems that might otherwise

go undetected [Ref. 6:pp 3]. In support of this theory,

Wright and Monk (1991) conducted two studies using the think-

aloud protocol. Their initial study included an experiment in

14

which the success of trainee software engineers was compared

with that of more experienced designers in evaluating a menu-

based interface. They followed this study by one in which

designers of a system were compared with designers unfamiliar

to that system in predicting and evaluating problems with the

system. Monk and Wright concluded that user testing with

think-aloud methods not only is an effective technique for

interface designers, but also significant gains were to be had

from designers carrying out their own evaluations [Ref. 13:pp

255-2571.

More importantly, this verbal protocol provides insight

to the user's perceptions of both the computer system that he

is working on and of the task required of him. By verbalizing

his thoughts, the user's task representation (i.e., goal

hierarchies) and the user's device representation will be made

known. Through this, the task-to-device mapping can be more

accurately achieved through the detailed observations provided

by the think-aloud protocol--thereby, pinpointing aberrations

in the task-to-device mapping, which can be later analyzed to

develop recommended alternatives that will provide better

task-to-device mapping--thus reducing the overall cognitive

complexity of the tasks to be performed on the selected

interface design.

15

D. COGNITIVE COMPLEXITY AND USER INTERFACES

Ultimately, the chosen interface design will impact the

user's ability to perform required tasks on the interface.

The extent to which the interface allows the user to interact

unhampered is a reflection of the demands of cognitive

processing imposed on the user. The GOMS and Cognitive

Complexity models theorize a method for identifying and

reducing these demands. Each of the two interfaces chosen for

this research, Direct Manipulation and Command Language,

appear to have complimentary demands on cognitive complexity

issues with regard to interface design. It is the premise of

this research that the Direct Manipulation interface is easier

to learn and operate because it has less taxing demands on the

user's cognitive processing behaviors. A comparison of the

types of cognitive processes required by each of the two

interfaces follows.

Because the Command Language interface requires the user

to - -municate with the computer by typing a formal language,

using a specific syntax, the user not only has to learn the

requirements of the task domain to be performed, he must also

have an understanding of the computer itself. The user is

required to learn and memorize the commands and the sequences

needed to complete an operation within a given task before he

can begin typing them into the computer. The user may make

errors due to: the confusion of using the syntax itself,

16

typing errors, and a mismatch between the user's intention in

the task domain with the computer concepts or syntax [Ref.

3:pp 154-155].

Specifically, this approach to interface design has

several disadvantages: the commands are difficult to memorize

and are therefore error prone; uncertainty exists that a

command has been executed as expected (requires the user to

follow-up by performing a subsequent command); and the

inability to scroll through directories in both the forward

and backward direction necessitates a high degree of

memorization and/or the repeating of the operation [Ref. 3:p

155]. The heavy load of memorization required by the Command

Language interface burdens the Model Human Information

Processor with a large number of retrievals of information

from long term memory and repetitious recognize-act cycles.

As theorized by Kieras and Polson, this correlates directly

with a bad task-to-device mapping, and, consequently, higher

user complexity.

Direct Manipulation interfaces enable the user to

communicate with the computer, and thus control activities,

through direct action on visible objects rather than by the

use of a procedural language. The graphic interface and mouse

selection provides the user with Direct Manipulation interac-

tion and allows the users to operate intuitively--without a

lot of memorization. In Direct Manipulation, the visual

17

representation should match the way in which people think

about the problem [Ref. 3:pp 154]. This further allows the

user to focus on the task itself with little need to "learn"

the computer operating system which is given [Ref. 3:pp 155].

Another central issue in determining the demands placed

on the cognitive processors of the user is the feeling that

the user has control of the actions he is performing on the

computer--this is termed "directness." It is theorized that

if the relationship between the command and the action can be

made more immediate and direct, the user's understanding will

increase (Ref. 3:pp 154]. This relates directly with the

recognize-act principles of the GOMS and Cognitive Complexity

model in that if the user can more immediately recognize the

state that the computer and/or task is in at a given time, the

user will be able to select the proper methodology and

production rules for the next step within the goal hierarchy.

If this is done with more accuracy, there will be less

required recognize-act cycles and less production rules fired.

The Command Language interfaces create a feeling of indirect-

ness between the user and the world of action. This occurs

because the user is constantly describing, through typed

commands, the actions rather than actually performing the

actions. On the other hand, in Direct Manipulation interfac-

es, the user performs actions on the objects of interest and

the system shows the actions that are performed immediately

18

[Ref. 3:pp 154]. Therefore, the user has a feeling of control

over the objects in the task domain--i.e., the user senses the

"directness" of his interaction with the computer. This sense

of directness should ultimately result in increased efficiency

for the Direct Manipulation interface user.

19

III. RESEARCH METHODOLOGY

A. INTERFACE DESCRIPTION

The two interfaces, Command Language and Direct

Manipulation, have been developed for the purposes of experi-

mentation and are only functional with respect to the

operating system's file management system. The system

described herein simulates the common functionalities of any

typical file management system.

The file management system supports the user in managing

the files that work together to produce the program that the

user sees and interacts with on the screen. A directory

contains the files which make up the program. Subdirectories

are utilized to further segregate files in logical groupings

for easier identification. A typical file management system

allows the user to perform the following functions: to

create, copy or r ove files and to create or delete directo-

ries. Each of the two experimental interfaces provide these

specific capabilities: access to a directory tree and help

screen, create a file, copy a file, rename a file, sort files,

delete a file, create a directory, and delete a directory. In

addition, the Command Language interface has a command to view

the contents (files and subdirectories) of a designated

directory. This function is provided automatically by the

20

Direct Manipulation interface when a directory or subdirectory

is selected with the mouse.

At Table 1, is a complete listing of all the commands

available within either interface, to include the sequence of

steps required to perform each.

Instruction sets given in Appendices A and B were

provided to the user in the conduct of the exercise and also

provide a detailed description of each of the interfaces as

described below.

1. Command Language Interface

The Command Language Interface includes the three

windows illustrated at Figure 1: (1) a Directory Window which

displays the directory tree, (2) a File Window which displays

the subdirectories and files stored in a specified directory

as identified in the label, and (3) a Command Window which

displays user-input commands, as typed on the keyboard.

Figure 1. Command Language
Window Format

21

TABLE I -PIOCIDUIES R!QUIRID TO EICUWE CORANDS_________________

Command Cozzcand ',anguage lr: .nnl
Name Procedures Proce4res

1Copy File COPYFILE - Select directory
<directory\from filename) - Select filename
to (directory\to filename) -ee: nezale

- Select cony Pile :o
- Accept path" name

>Create Pi>' CREATEKLE Kdirectory\new - Select* &Irectsrv
filename) - Select new name

- Select Create Pile icon
- Accept path name

3. Remove File REMOVEPILE -Slc ietr
(directory\old fie-Select file came
name) to (d~rect"ory\new file -Select Delete F.ile icon
name) Acp ahcm

4. Rename File REMAMEPILE (direc-tory\old -Select directory
filename) to (directory\new -Select file
filename> -Select new name

5. Sort Pile SOR'TFILE (directory) by (sort - Select directoru
mechanism) - Pull down menu from

Files Sort window
- Select sort mechanism

6. Create Directory CREATEDIR (directory\new - Select higher order
filename) directory

- Select new name
- Select Create Directory

icon
- Accept path name

7. Directory Tree DIRTREE (directory) - Select Directory Tree
icon

8. Remove D icory - Remove direc .)ry - Remove directory
contents contents

- REMOVEDIR <directory> - Select directory
- Select Delete Directory
i con

- Accept pat~h
Yeri ication

9, Li1st Files LISTPILES (directory) - Select directory

10. Help HELP (command name) - Select Help icon
- Select command name

22

If a portion of any window or screen is obstructed

from the viewing screen, the user is prompted to type "M" for

more.

The keyboard is the only input device used for the

Command Language Interface. All commands are typed on the

keyboard at the command line. Only one syntactical format is

correct for each command. If the user types a command

incorrectly, omits an argument, or specifies a non-existing

file, an error message appears in reverse video at the base of

the command window as shown in Figure 2.

E

Figure 2. Command Language Screen
Containing Error Message

The error message indicates the type of error made,

but not the corrective action to be taken.

23

A user can access a general Help screen at any time

by typing the command HELP at the command line of the Command

Window. The user can obtain a detailed description of each

command by typing the command HELP, followed immediately by

the command name. Figure 3 shows an example of the Help

screen for the CREATEFILE command.

HEP IUNERAL

1. The CasuwWUnd aue IU.oftmpu a nul 4a nw~ " Ur md du~dm

2. AA t bmem . wu in mr am a s a en aw. Le. bamof r.

pu&'id ngo up pUS .1 f r Sea adI fMs V on In

& Cmm.o mjmVeo.

P"M M o bm, m 4lay 6 41aV

Figure 3. Command Language General
Help Scre a

An example of the Command Language screen is

provided at Figure 4 as the user might see it during the

performance of a complex task. In this instant, the user has

displayed the directory tree and listed the files in the

'business' directory.

24

iamm~y~mam

Figur 4. S.mman LagaeSre

4-MMMIhY- AADM-JEFM
e- Mas Per AoWrmnS

2.~~~IW Dire t Memouato In0dac

~? 1404PS 110a

Interf ace
16'1 4I wi nd w I: I a

Figure 4. Command Language Screen
Complete Task Performance

2. Direct Manipulation Interf ace

The basic structure of the Direct Manipulation

Interface includes five windows as shown in Figure 5: (1) a

Directory Window which displays the hierarchial directory

structure, (2) a File Window which displays the files listed

in a selected directory, (3) a File Sort Window which displays

the files of the selected directory sorted by name, date of

creation, or size, as designated by the user, (4) a New Name

Window which displays all the names available for the create

a file/directory and rename a file commands, and (5) an Icon

Window which contains ail the icons used for task operations.

It any of the information window views are obstructed, the

25

user must perform a scrolling operation by clicking and

dragging with the mouse as described in the instruction set.

amI

Figure 5. Direct Manipulation
Window Format

The primary method for input to this interface was

the mouse. The only task which required the use of the

keyboard was task five, in which the user was required to type

in a corrected path name when copying a file from one

directory to another. All other input was performed by

clicking with either the right or left mouse button as

prescribed in detail in the instruction set.

When the user performs an operation properly on a

file or directory, a prompter window appears allowing the user

to accept or cancel the operation. If insufficient

26

information is provided for an operation, or an error is made

in the selected information, an error message will appear

containing a simple error statement as shown in Figure 6.

-___K
U377 gol-1-31 12:a :84

*Se jcabimin U133 90-eI-31 12;MM~p ar
iler tl if Ss -3 1 12 N:P dJAa n

Sauth chir 221! 2-01-31 12 zb:4 6

aet It~

or% at|

cbe it&' f

ci. I

Figure 6. Direct Manipulation
Screen Containing Error Message

As in the Command Language Interface, the user may

access a general help screen when needed. An example screen

is shown at Figure 7.

The user selects the name of the command or item

that he needs help with by placing the cursor over that name

and pressing the left mouse button. The right side of the

Help window then displays the step-by-step instructions for

the specific operation.

27

An example of a screen in which the user has

selected the 'business' directory is provided at Figure 8.

This portrays the same information as provided in Figure 4

using the Command Language Interface.

Lqt P11. slo UN Aiwl o -. tai.

=%lb Ik dlrmmWj .9 . .. h-

, t t. to twb a .c 10 t m or th
,)17Wv 1"M d Pryerj he ll we

j.10 Ii Li., Bi.dA.

bss.'. !e. Ui.d. 4. ur bs., t path Ps
bill. Omas. dirictsr i Nq~m al m l
cal ftm Wledil itau Do too bribaard. to
CWtlF t 111b .Is ~ bl lboio the kt vai,

rtma rile. botil~ bud UMe 06 ao
Mlsh fig the M. w.it) Oft i.r%

Figure 7. Direct Manipulation
Help Screen -

Create Directory Help

Fiur 8. Diec ti o Manipulaion
Scree - Coplt Task

Perj fl ormanceTOV cn:Wol K

big E-! IFie28:

B. EXPERIMENTAL DESIGN

The experiment design was developed to support the

evaluation of the cognitive complexity mental processes of the

typical user while performing commonly used, complex tasks

involving the file management system on two separate

interfaces. Five complex file management tasks were developed

to test the mental algorithms required to operate within this

system. A separate group of four participants was formed to

perform the file management tasks on each interface. Because

an important research area was the user's task representation,

it was not necessary to test the same group on both

interfaces. The task knowledge gained by the subject during

the initial task performance on an interface nullified the

ability to reevaluate him on a second interface with the same

or similar tasks. Therefore, two groups of participants were

used.

As each participant began the experiment, he/she was

given a brief overview of the experiment and was the provided

a set of instructions to read regarding the specific interface

that he would be using. Each of the instruction sets

contained parallel information--a brief overview of operating

and file management systems in general, a detailed description

of the interface itself, and an introduction to the think-

aloud procedure that would be utilized in the experiment.

Copies of each of the instruction sets are at Appendices A and

29

B. It was emphasized throughout this introductory phase that

it was the interface, and not the individual, that was being

evaluated. Once the participant completed reading the

instructions, he was given the five tasks to perform, told

that time was not a factor of this evaluation, and asked to

work through the tasks to completion.

The users were not given any practice session to become

familiar with the interface prior to the start of the

evaluation. During preliminary test runs of the experiment

tasks, it was observed that much learning was acquired during

the practice session and that many of the user's vital

concerns, misperceptions, and errors were lost for analysis

during this practice session. Therefore, the practice

session, as well as a set of simple tasks, were removed from

the experimental process. This was not done without known

consequences--the user's work through of the early tasks was

particularly cumbersome as it was necessary for him to undergo

a very steep learning curve in order to successfully complete

the task. This lack of familiarity forced the users to use

the help screens extensively. There were also high rates of

error in learning syntax procedures for the Command Language

interface and mouse techniques for the Direct Manipulation

interface. It also became necessary for the observer to

intervene, on occasion, to assist the user in order for him to

proceed with the task at hand.

30

The observer's role was vital to the think-aloud protocol

procedure. Each experiment was conducted individually in

order for the observer to be present to ensure that the

"talking aloud" continued throughout the experiment. Although

the observer was stationed along side of the participant, the

observer attempted to be as non-obtrusive as possible. The

role of the observer was to observe, and not to interview, the

participant. The observer prompted the user to continue to

verbalize his actions, thoughts, and concerns throughout the

experiment. The observer only provided help if the

participant was unable to continue working through the task

because of a repeated error or if, after trying all means of

obtaining assistance from the interface, he could not take

another step towards accomplishing the task.

C. SELECTED TASKS

Five rudimentary tasks, which required complex cognitive

thinking--such as establishing a goal hierarchy, operators,

methodology, and selection rules--were designed for the

experiment. The selection insured that the users were

required to perform each of the commands available within the

interfaces and that the users demonstrate an understanding of

the relationships of the directories, subdirectories, and

files within the management system. The five tasks are

provided below, along with an explanation of the minimal

31

cognitive requirements of each. The capitalized tasks are

stated just as they were written for the p- ticipants to

perform.

TASK 1: FIND THE FILE CALLED PLANE AND COPY IT TO A FILE

CALLED AIRCRAFT WITHIN THE SAME DIRECTORY

The file called plane is located within the subdirectory

airtrans. Therefore, the first goal of the user is to

locate the file--because it was similarly named with the

subdirectory planes, the user was forced to distinguish

the name differential, as well as the file-subdirectory

differentiation. Once located, the user must then select

the copy operations to copy the file back into the

correct subdirectory.

TASK 2: CREATE A FILE CALLED CAR IN THE GROUND DIRECTORY

AND SORT GROUND FILES BY FILE SIZE

The user's first goal is to locate the subdirectory

ground. Once this is completed, the goal is to create a

file named car and put it in this directory. This

involves selecting the proper operators to create the

file and selecting the correct path name for its

32

location. The user must then select and execute the

operators required to sort the files by size.

TASK 3: DELETE THE PLANES DIRECTORY

In order to delete the planes directory, the user must

first locate the subdirectory and then determine what the

subdirectory contains. The user must then remove all the

contents of the directory prior to attempting to delete

the file. The user must, therefore, identify the planes

subdirectory called jets and subsequently remove the

contents of it, as well as the jets subdirectory itself.

Once removing all of the contents of planes, the user

many then remove the directory planes.

TASK 4: FIND THE LARGEST FILE OF ALL THE DIRECTORIES AND

RENAME THE FILE TO LARGE.FIL

The initial goal of this task is to locate the largest

file. This requires the users to sort tach of the

directories and subdirectories by size in order to locate

the largest of all files. Included in this is the

requirement to compare the file sizes of those files

located at the directory level. Once all of the file

sizes have been compared and the largest file located,

the user's goal is to rename the file large.fil. The

33

user must then select the correct opera ors and execute

the command to rename a file.

TASK 5: THE SYSTEM SUPERVISOR INFORMS US THAT THE GROUND
DIRECTORY IS A MISNOMER AND SHOULD REALLY BE CALLED THE
FLEET DIRECTORY. ALSO, HAVING A GROUND DIRECTORY CAUSES
CONFUSION AMONG THE STAFF. RECTIFY THE SITUATION.

The user's first goal is to create a directory called

fleet and place it in the same directory as ground. The

user must, therefore, locate the ground directory and

note its higher level directory. The user must then

select and complete the commands required to create a new

directory. Once the new directory is created within the

higher level directory of ground, the user must then move

the files from ground to fleet and remove the ground

directory. To move the files, the user must copy the

files individually from ground to fleet and the remove

each file from ground. After all files have been moved,

the ground directory must then be removed.

D. PARTICIPANTS

The type participants chosen for the experiment were

intended to emulate the intended user of most interfaces--that

of an inexperienced novice. Eight students participated in

the experiment. Unlike more typical data oriented

34

experimental protocols where larger numbers of participants

are needed to make certain of the accuracy of the outcomes,

verbal protocol analysis requires only a few participants.

The reasons are twofold: 1) the wealth of information

obtained from such a protocol requires a tremendous effort of

compilation and analysis, such that large numbers of partici-

pants are not feasible and 2) each participant's verbalized

representation of the task performances are extremely

insightful and useful at pinpointing problems. The eight

volunteers, four men and four women, for the experiment are

all graduate students, recently enrolled at the Naval

Postgraduate School. All had little or no exposure to

computers and operating file management systems. The age

range of the students was 24 to 40, with a mean age of 32.7.

As each student was a graduate level student, their

verbalization skills were judged to be above average. The

eight were randomly assigned to each interface; although it

was ensured that an equal number of men and women were

assigned to each interface.

E. EXPERIMENTAL ENVIRONMENT

Each of the experiments was conducted on an individual

basis and performed in a quiet, laboratory setting that was

not unlike most office environments. The subjects were each

provided with a A UNISYS 8386 computer, monitor, and keyboard.

35

Participants utilizing the Direct Manipulation interface were

also provided with a mouse. The users were allowed usage of

a pencil and paper to take notes during the experiment, if

they so desired. The experiment was recorded on an ordinary

tape recorder which contained a built-in microphone. The tape

recorder was placed conspicuously near the monitor, so as not

to intimidate the participant. Because the microphone was

very sensitive to noise pick-up, the user cuod speak

comfortably with a normal to low voice range. The observer

sat to the side of the participant throughout the experiment,

interfering as little as possible.

F. ANALYSIS OF DATA

Prior to the start of actual conduct of the experiment,

baseline goal hierarchies and production rule sets, in the

form of chronological flow charts, were generated for each

task within each interface. These are provided in the below

figures.

36

Command Language Interface Goal Hierarchies:

Find '01'e file called .plane and copy it to a file
called aircraft within the same directory.

Create a file callcarne thegn ietr

andso Plrond Fle yfl ie

EIRE E LISFILES

(DI3T

Delete the planes d~ireCtory.

D90 e lte teDlt

PlFaies

PlanesFPles

FindheDlrgetr fieo teDirector e n

renam the ile t larglesi

DIRTREEE LIS-1()E

Larg Fib

Cdrrent i

38gghi

The system supervisor informs us that the grounddirectory is a misnomer and should really be called
fleet directory. Also, having a ground directory 'in)
the system causes confusion among the staff.
Rectify the situation.

Droctory to

Create te ete ythe
Fleet round Gliesnc

Diro~torytDiFleetory

Drc(Ory Directory

DIRTREE

LI1S T F 1 L ES

Direct Manipulation Interface Goal Hierarchies

Find the file called plane and co~y it to a file
called aircraft within the same directory.

Selct Red he Select Select Select
Diecoy il ms ie) New Name Copy 'con

39

Create a tile called car in the ground directory
and sort ground files by file size.

Siet Seect relectr

Createo Soirt 10 LInco

Car Gro4 n

Findl the largest file of ;Ill the directories, and
rename the file to large/il.

tr~e Lrgeslarge I'dO

File toLrg F!ie m

Se'/c foa \0 \ -~ (L ;~ IiDirectorync Li\
(V0 '' .u t'tF1

Sort Foeu r, S':oc

Direor directory Asohaigagrbddietryi

The sy~stem- vuDsor confusonm u-mong thestf

",:ctify, thie situation,

C~~~ecrDrecor to erD'ctv

cFn 1 G0, ~) ,cu File **'* - 1

Diroctory UI~rriry_ .Usi. -- ;:i

(t) j _

41

Command Language Interface Flowcharts

L'fl, tr f !G Ca110d piano andJ C()I)y it 1o a Ill()
calle,-- alircraf[,vitrlin the same(Cfirectory.

LITIESPeo Yes Cot

Root Directeoroy

Create a Lie called Car in the cround directory;
and: sort grountj tiles by Wfe size.

greoQIl ,ore Grolunla

Eoot SDirectory

42

De~e* e tre p'anes dorecor y.

-, / ~e Yes 9b Yes

r :. ' utdir

No 1 ~ _ ____No

7 -- -No '~No
STFLIE3, /Remo~q do W0 ," tI'

Sul-(cr CC or y Yves Yes

Find tne largest file of all the directories and
rename the tie to (arge. [ii.

Yes I ,.Yes.
ymv Y/ >LIS IF ILES/ ~ ~d~ y .S1 'LLS

c c t \..,

-, No N

Large Fle Name ?
Large iie NoYe s

srqq

Yes

A -9 /

43

The Ss tern Super% isor informs us that the gof,
Cirector y 'S a rns),rcrner and(: -r ouldi reafgly/ Ue alc

fle!crector . Aloc, hjavifiQ j :rjufld Cir@-tj)r y iH
tn~e s',stern causes confusion among the staff.
f-ectih-Y tne Situation)

9,ou Ye Ye
LISTFILES /ground Ye eldi sIIIE Cdir f(OSt 111Sfound\e~3

Root Dir ground
N o

nemo~qoIr

Direct Manipulation Interface Flowcharts

Find the file called plane and cooy it to a file
called aircraft within the same directory.

No0

Selec t a Reed ,lier Ys Soe
Dilrectory File List tour /Plao

Se")CI CCD. Splact

44

Create a file called car in the groundl director y
and sort ground files by file size.

Dtirecior

D et th plne drctore. St~ecoy ~ S

OcalaCIO YsYeI

ub- ele t Iesrc
elect Deletctelet

45Ye

Find the largest file Of -,l)l thu directorics and
rename the file to large fiI.

No

No For Yes /Crrn Yes
Facn La-rge t-ie >' Fil - ~ jrn

Current File

Select Lrg SXec select
FL l Nam ta g Roenm File

lrector yi / N Name l Ico

The system supervisor informrs us that the UrcLY)(d
directory is a misnomer and should really be called
fleet directory. Also, having a ground directory in-
the system causes confusion among the staff.
Rectify the situation.

Read SCle Gc t Select Slc
Dir Transpor t Fleet ow
List Dir New Name D irectoryDretr

Cr~ongSole46

The analysis of the data began at the conclusion of each

experiment session. The tape recording and a user log of the

session was used to transcribe the data in a verbatim manner.

Several more iterations of the tape transcribing resulted in

a summarized version in which pertinent information was

retained in verbatim form for further analysis. Based upon

these transcriptions, goal hierarchies and flow charts for

each individual participant's performance on a given task were

developed. The user's goal hierarchies were then mapped to

the baseline goal hierarchies to obtain the needed task-to-

device mappings. The flow charts were similarly compared to

their respective baseline flow charts and differences were

computed. The following specific data elements were measured:

the number of production rules, the complexity of the rules,

the matching of steps in sequence within the task-to-device

mappings, and, finally, the number of superfluous steps

performed by each user.

To illustrate this process, the complete analysis of the

task requiring the user to delete the planes directory will be

shown as performed by one user on each of the two interfaces.

This includes the summarized transcription of the experiment

session, the task-to-device mapping and the flow chart

generated for each user.

47

COMMAND LANGUAGE INTERFACE
SUMMARIZED TRANSCRIPTION

DELETE THE PLANES DIRECTORY

-HELP DELETEFILE; HELP; "They trick you on that one by
not having it follow the same name";

-HELP REMOVEDIR; HELP REMOVEFILE; attempts to remove the
plane directory--"Aah, it's not empty, do you want me to
do it anyway? Well then, I guess it must have files in
it that I have to remove first";

-HELP LISTFILE; HELP REMOVEDIR; lists the files in
planes; removes the files in planes--attempts to delete
the directory jets as if it were a file, receives error;

-"We did not previously remove jets . jets is a
directory; well, you have to delete the files in a
directory; do you have to remove directories too?";

-HELP; HELP REMOVEDIR; attempts to remove the directory--
receives the error that jets is not empty;

-Removes all the files from jets; REMOVEDIR
military\planes\jets; REMOVEDIR military\planes;

Delete the
planes

dDrectory

Find I Dete

planeF
directorydie tr

Help DIRTREE LISTFILE Dolee oelete

- .Subdlrectorles Director y
~Files

Help Hel Help Help LSI IE F19
Deletell e Pemoveile emovedir LISFF

Figure 9. User's Task 3 Goal Hierarchy - Command Language

48

Help / / / Help / Help . Reno,,e 7 Help
Delete Help Remove Remove DirFile /r / neFi /le

err ,,of - noI oe , IHelp / Remove No I , /--- -7 Ho,,-p
Figur7 elp File Ts 3F'lo 1 atFILE RomnLooa

SUDRIE rltAsCRPTone

ae ELE r - source in pasn9n
t le Coos Ioe

not exist Ye s

File

/Remove li 3 O!Remove _ Remove/

Il aIha n r to
r l ets Dir ic

je-ts g bk u lanes

erdor isnon empty eYems

R4moveFile/

Figure 10. User's Task 3 Flow Chart -Command Language

DIRECT MANIPULATION INTERFACE
SUMMARIZED TRANSCRIPTION
DELETE THE PLANES DIRECTORY

-"I 'm going to go over and highlight planes subdirectory
and DELETE FILE icon; an error came up that I didn't
select a file, so I guess I'm going to go over and try to
select both files and see if that works";

-"Oops, it won't let me, so I'll try one at a time";
delete both files; "there are no files in my directory so
I'll go ahead and try to delete the directory planes";
selects the DELETE FILE icon and receives same error;

-"I'm going back up and try to get a menu from planes,
can' t get one; oh, I see the error . .there is a DELETE
DIRECTORY icon which I should be using"; selects the
DELETE DIRECTORY icon--receives an error that the
directory is not empty;

49

-"I have no idea what that means so I guess I better look

at the HELP; I'm going down to DELETE DIRECTORY, maybe

that's it because planes is a subdirectory"; reads HELP

window and discovers that all subdirectories must be

removed in order to remove the directory;

-Deletes the files under jets; "I don't know whether jets

is a file or a subdirectory so I'll try to delete the

file--nope, o.k., delete directory";

-"Now finally, I can go ahead and delete the planes

directory"; deletes the planes directory;

D31elo the
S planes

Directory

Find Delee ile Delete planes Delete file Delete Deltto Dir

eplanes plane I ,tles planes Subdirectory planes

- error - " error -

DIRTREESelect Select
Help O lot y Delete

Select Select Slc
Dr File Delete F ie Dr'tete Delete SlcsU1 _- F I I uI

re 1 c Irector

Figure 11. User's Task 3 Goal Hierarchy - Direct Manipulation

50

Selects elects Delete Fi Ies NoSelocts Delete /Slocts DOleto0a V 2 ud)lroctor rVf

Error no Ille Error- ic no
directDiryc .ory

Solcl I '2e

Select -eeeDr~ or y

elec Deete Selets /ares elecs Dlet elets ele F lele
Directory Directoryietr cnFle IconFod

elect DelllSel ct

Directry elDtslItF
z~~~~~~~ Iz /-)~r:ont~t3

Figure~ ~ ~ ~ ~ ~ ~~~~~Y 12 srsTs lwCar ietMnplto

51e

IV. DATA ANALYSIS

A. METHOD/SAMPLE SIZE

The data extracted from the goal hierarchies and flow

charts were utilized for comparisons between two groups--the

Command Language and Direct Manipulation Interfaces. The data

was computed by comparing 20 (4 subjects, 5 tasks) data

points: each of the four users within a group performed five

tasks. Four dependent variables were computed--the number of

production rules generated, .he complexity of the production

rules, task-to-device mapping, and the number of unnecessary

steps added to the production system. While the number of

production rules generated by the user and the number of

extraneous steps were counted, the relative complexity of the

production rules and the strength of the task-to-device

mapping is a relative rating score. Each was compared to the

baseline data and was rated between zero and one, with the

rating of zero implying strict adherence to the baseline

model. The mean and standard deviation of each measure was

calculated and a series of one-tailed t-tests were performed

on each measure.

52

B. RESULTS

A table which summarizes the analyzed data is provided at

Table 2.

TABLE 2: SUMMARY OF DATA ANALYSIS

VARIABLE MINIMUM MAXIMUM MEAN STANDARD
VALUE VALUATION DEVIATION

Number of Production Rules

CLI 3.0 6.0 3.9 .91

DMI 1.0 5.0 2.55 1.05

Confidence Interval (t (38) = 4.3.411, P < .0001)

Complexity of Production Rules

CLI 0 .98 .48 .26

DMI 0 .8 .31 .21

Confidence Interval (t (38) = 2.0781, P < .005)

Degree of Mapping Correlation

CLI .43 1.0 .63 .18

DMI 0 .7 .4 .17
Confidence Interval (t (38) = 4.2589, P < .0001)

Unnecessary Actions
CLI 2.0 6.0 4.15 1.31

DMI 0 5.0 2.3 1.34

Confidence Interval (t (38) = 4.4141, P < .0001)

Analysis of the four specifically measured areas produced

the following results:

53

1. Number of Production Rules

Users of the Command Language Interface

generated more production rules than Direct Manipulation

users, with means of 3.9 and 2.55, respectively.

2. Complexity of Rules

On a scale of zero to one, Command Language

users created more complex production rules than Direct

Manipulation users.

3. Task-to-device Mapping

There was a much stronger task-to-device

mapping for Direct Manipulation interface users.

4. Number of Unnecessary Steps

Command Language users performed an average of

nearly two more unnecessary steps in the task performances

than did the Direct Manipulation users.

C. IMPLICATIONS OF RESULTS

The results of this experiment have significant

implications for four major areas of user interface

development--how the nature of the interface affects the

user's mental model, the performance of users operating on an

interface, the systems design process, and implications for

the "think aloud" methodology. Each of these will be

addressed.

54

1. Affects on Mental Models

User interfaces do affect the mental models of

users. The design and development of the interface can 1)

shift the focus of the user's attention to various aspects of

the operating requirements, 2) determine the degree of working

memory load, and 3) determine the user's ability to recover

from errors. The results of these three affects on mental

models are a more simplified mental model for the user.

Specifically, by choosing a Direct Manipulation

language, the designer will allow the user to focus on the

task at hand--as he will be able to visualize the object of

interest as well as the actions (via the icons) that are

required to be performed on those objects. The user does not

have to learn or memorize the syntax required of each command

--the command icons are before him at all times and may be

accessed by the mere pressing of a button on a mouse. The

user may therefore concentrate his efforts on the elements

required of each task--the interface has become invisible to

him.

On the other hand, the Command Language user must

know the commands prior to typing them in for execution.

Knowing the commands initially requires the user to memorize

commands and, ultimately, requires the user to learn the

commands through repetitive recognize-act cycles prior to the

command becoming a part of long term memory. While users of

55

the Direct Manipulation interface must ensure that all of the

required information is selected prior to being successfully

executed, he may act intuitively by comparing the objects of

the task and the windows available to him--he must not

memorize any commands. This requires the user to focus on the

interface itself, as well as the task to be performed. This,

of course, increases the load on the working memory of the

Command Language user. A second aspect of the interface can

provide alternatives f-: reducing the burden of requirements

on working memory. The constant visualization of data such as

the directory window in the Direct Manipulation interface

reduces the load on working memory significantly, which also

effects the user's ability to detect the cause of and to

recover from errors. The visual representations of the Direct

Manipulation and the reduction of errors extraneous to the

task at hand allow the user to more directly determine and

recover from errors made.

2. Affects of User Performance

The implication of a more simple user model has

direct effects on the performance of the user--particularly in

the case of the infrequent or novice user. This results in

increased learnability and ease of use. This streamlined

mental model is a direct result of an aligned task-to-device

mapping from the user's perspective, a reduced burden on the

working memory that maintains the load within the user's

56

capability, and the reduced number of recognize-act

requirements leading to production rule firings. The aligned

goal hierarchies of the user and the task result in marked

improvement in the followinig way. The goal hierarchies result

in knowledge being compiled into groupings which relate to one

another. As the user learns which actions are related to

others, the user compiles the production rules into one larger

production rule. When there is a high correlation between

tasks--i.e., the tasks have similar goal hierarchies--there is

a transfer of knowledge from one task to another [Ref. 12:pp

195]. Similarly, user performance is improved by reducing the

load on working memory capacity. Working memory does have

limitations in that it relies on the strength of the

production rules in them. These rules acquire strength

through successive, successful application of the rule. If

the rule is weak or incorrect, the recognize-act cycle will

fire incorrect production rules. All of this can lead to the

following working memory failures; loss of declarative

knowledge, loss of a goal, or loss of a discriminating feature

of the production rule (Ref. 12:pp 203]. Incorrect or

unnecessary production rules generated by the user can further

negatively impact the user's performance in that the user must

discriminate which of the production rules are the correct

ones--having multiple, uncompiled or weak production rules

within memory can only result in increased possibilities of

57

incorrect actions by the user and slower learning. Thus, a

more streamlined, simplified mental model may have significant

impacts on increased user performance.

3. Affects of Systems Design

Using the think-aloud protocol, in conjunction with

the formalized production rule framework as prescribed by

Kieras and Polson, provides the system designer with a new

tool to focus on in the design process. The usage of

framework in this context may allow the designer to shift his

focus early in the design phase to a thorough task analysis.

The early focus on empirical feedback from the users and their

perception of the device/task allows the designer to more

accurately specify the knowledge requirements prior to the

development of the system. Prototyping can begin at the

earliest phases of design as the designer can use paper mock-

ups of the proposed interface to observe users in the think-

aloud protocol and receive important input to achieving a

strong task-to-device mapping in the final :oduct. This

lends itself well for the designer to achieve an iterative

design approach, while avoiding costly modifications to the

system. Additionally, the pinpointed problem area feedback

provided by this protocol provides a detailed evaluation of

the relative complexity of alternative designs--thus allowing

the designer to identify the trade-offs of design issues.

Based upon this type information, the designer may then be

58

able to design better documentation and training programs

which account for the trade-offs resulting from the final

design decisions [Ref. 14:pp 300].

4. Affects on Think-Aloud Methodology

The results of this study further substantiate the

effectiveness of the think-aloud protocol as a useful

evaluation technique for the designer. Furthermore, it is

particularly effective for use in conjunction with the

production system model for the following reasons. It

supports the development of production rules as it is the only

currently used methodology which provides a "genuine" user's

perspective of the user's task and device representations.

Both the goal hierarchies and the user's "how-it-works"

knowledge are more precisely defined. Thus, the task-to-

device representation becomes more accurate as opposed to the

designer's inferences of what the user was attempting to do.

According to Wright and Monk's 1991 study, designers are poor

at predicting exact problems which will surface in their own

system design [Ref. 13:pp 56]. It is therefore important that

the user's feedback be utilized because the baseline

production rule system predicted little significant difference

in the predicted cognitive complexity of the Command Language

and Direct Manipulation interfaces. And finally, this

methodology allows for a very small sample size--even one

user--to provide immediate and effective feedback--thus

59

allowing for minimal cost, in terms of both time and dollars,

evaluations which can be performed throughout the system life

cycle.

60

V. SUMMARY

The think-aloud protocol was used in this exploratory

study to demonstrate the effectiveness of Kieras and Polson's

theoretical model, GOMS and the Cognitive Complexity Model.

The results of the experiment provide further quantifiable

evidence that the use of this framework may be applied by

system designers to develop user interfaces that are more

easily learned and used.

To analyze the effectiveness of the GOMS and Cognitive

Complexity Model, an experiment comparing the cognitive

processes of users on two interfaces, the Command Language and

Direct Manipulation Interfaces, was conducted. Two groups of

users performed a set of five complex file management tasks on

their respectively assigned interfaces. As each user

performed the required tasks, the session was tape-recorded to

capture the verbalized thought processes of the users as they

"thought-aloud" through the execution of the task. Upon

completion of the eight tape-recorded sessions, each of the

tapes were transcribed and analyzed to develop both a goal

hierarchy and a production rule set for each task performed by

an individual user. A task-to-device mapping was performed to

determine the alignment of the users' perspective of the task

representation with that of the designer. Each of the mapping

61

sets for each task were then compared across interfaces to

determine which interface had better correlated task-to-device

mappings. Further, the production rule sets of each interface

were compared, by task against the baseline production rule

sets, to determine the relative complexity of each of the

interfaces.

The think-aloud process was chosen as the methodology for

conducting this experiment because of its insights of the

users perceptions of both the task and device representations.

Current evaluation techniques used in quantifying complexity

based on production rules rely on execution times and by

identifying the number and type of errors committed by the

user. This protocol provides detailed observations which, not

only pinpoint problem areas but, delineate why the problems

are occurring. This added why information strengthens Kieras

and Polson's theory of cognitive complexity by providing more

accurate goal hierarchies and task-to-device mappings.

Specifically, the experimen al results provide four

distinct implications for insight into the study of cognitive

processes are they are related to human-computer interaction.

First of all, the nature of the interface design influences

the users' mental models of a system. Secondly, the

complexity of the resulting mental model has a direct affect

on the user's performance on the given interface. This can be

measured by the number of production rules developed by the

62

user in task performance, the complexity of the production

rules generated, the completeness of the task-to-device

mapping, and the number of superfluous steps generated by the

user. Users with more complex mental models of the system

create greater demands on working memory, leading to an

increased chance of error. The third implication of this

study is that the use of a formalized production rule system,

used in conjunction with the think-aloud protocol, may alter

and improve the design process of the user interfaces by

giving the designer specific feedback on design alternatives

early in the design process. Finally, the study lends further

support to the think-aloud protocol as a valid, effective tool

in assessing the cognitive process of human-computer

interaction.

63

LIST OF REFERENCES

1. Coventry, Lynn, "Some Effects of Cognitive Style on
Learning UNIX," International Journal of Man-Machine
Interface, Vol 31, No 7, 1989, pp 349-365.

2. Kieras, David E. and Polson, Peter, "An Approach to the
Formal Analysis of User Complexity," International
Journal of Man-Machine Interface, Vol 22, No 4, April
1985, pp 365-394.

3. Margono, S. and Shneiderman, Ben, "A Study of File
Manipulation by Novices Using Commands vs. Direct
Manipulation," 26th Annual Technical Symposium, June
1987, pp 154-159.

4. Karat, J. , Fowler, R. , and Gravelle, M. , "Evaluating User
Interface Complexity," Human Computer Interaction -
INTERACT '87, 1987, pp 489-495.

5. Te'eni, Dov, "Direct Manipulation as a Source of
Cognitive Feedback: A Human-Computer Experiment with a
Judgement Task," International Journal of Man-Machine
Interface, July 1990, pp 1-25.

6. Lewis, E., "Using the 'Thinking Aloud' Method in
Cognitive Interface Design," Lecture 28, Ann Arbor,
Michigan: The University of Michigan Chrysler Center for
Continuing Engineering Education, 1982, pp 1-16.

7. Card, Stuart K., Moran, Thomas P., and Newell, Allen, The
Psychology of Human-Computer Interaction, Lawrence
Erlbaum Associates, Publishers, 1983.

8. Kieras, David E. and Bovair, Susan, "The Acquisition of
Procedures from Text: A Production-System Analysis of
Transfer of Training," Journal of Memory and Language,
Vol 25, 1986, pp 507-524.

9. Polson, Peter G. and Kieras, David E., "A Quantitative
Model of the Learning and Performance of Text Editing
Knowledge," CHI '85 Proceedings, April 1985, pp 207-212.

10. Bovair, Susan, Kieras, David E., and Polson, Peter G.,
"The Acquisition and Performance of Text-Editing Skill:

64

A Cognitive Complexity Analysis," Human Computer
Interaction, Vol 5, 1990, pp 1-48.

11. Deimel, Lionel (Editor), "User Interface Development,"
Support Material for User Interface Development, Carnegie
Mellon University, SEI-CM-17-1.0, April 1988.

12. Anderson, John R., "Skill Acquisition: Compilation of
Weak-Method Problem Solutions," Psychological Review, Vol
94, No 2, 1987, pp 192-210.

13. Wright, Peter C., and Monk, Andrew F., "The Use of Think-
Aloud Evaluation Methods in Design," SIGCHI Bulletin,
January 1991, pp 2E5-273.

14. Gould, John D., and Lewis, Clayton, "Designing for
Usability: Key Principles and What Designers Think,"
Communications of the ACM, Vol 28, No 3, March 1985, pp
300-311.

65

BIBLIOGRAPHY

1. Anderson, John R., "Skill Acquisition: Compilation of
Weak-Method Problem Solutions," Psychological Review, Vol
94, No 2, 1987.

2. Bovair, Susan, Kieras, David E., and Polson, Peter G.,
"The Acquisition and Performance of Text-Editing Skill:
A Cognitive Complexity Analysis," Human Computer
Interaction, Vol 5, 1990.

3. Card, Stuart K., Moran, Thomas P., and Newell, Allen, The
Psychology of Human-Computer Interaction, Lawrence
Erlbaum Associates, Publishers, 1983.

4. Carroll, John M., and Mack, Robert L., "Learning to Use
a Word Processor: By Doing, By Thinking, and By
Knowing," Human Factors in Computer Systems, edited by
Thomas and Schneider, Ablex, Norwood, New Jersey, 1984.

5. Carroll, John M., Interfacing Thought, MIT Press,
Cambridge, Massachusetts, 1987.

6. Coventry, Lynn, "Some Effects of Cognitive Style on
Learning UNIX," International Journal of Man-Machine
Interface, Vol 31, No 7, 1989.

7. Deimel, Lionel (Editor), "User Interface Development,"
Support Material for User Interface Development, Carnegie
Mellon University, SEI-CM-17-1.0, April 1988.

8. Ericsson, K. Anders, and Simon, Herbert A., Protocol
Analysis: Verbal Reports as Data, The MIT Press,
Cambridge, Massachusetts, 1984.

9. Gould, John D., and Lewis, Clayton, "Designing for
Usability: Key Principles and What Designers Think,"
Communications of the ACM, Vol 28, No 3, March 1985.

10. Haas, Christina, "Does the Medium Make A Difference? Two
Studies of Writing With Pen and Paper and with
Computers," Human-Computer Interaction, Vol 4, No 2,
1989.

11. Jerrams-Smith, Jennifer, "An Attempt to Incorporate
Expertise about Users into an Intelligent Interface for

66

UNIX," International Journal for Man-Machine Interface,
Vol 31, 1989.

12. Karat, J., Fowler, R., and Gravelle, M., "Evaluating User
Interface Complexity," Human Computer Interaction -
INTERACT '87, 1987.

13. Kieras, David E., and Bovair, Susan, "The Role of a
Mental Model in Learning to Operate a Device," Cognitive
Science, Vol 8, 1984.

14. Kieras, David E., "A Model of Reader Strategy for
Abstracting Main Ideas from Simple Technical Prose,"
Text, Vol 2, No 1-3, 1982.

15. Kieras, David, and Polson, Peter, "An Approach to the
Formal Analysis of User Complexity," International
Journal of Man-Machine Interface, Vol 22, No 4, April
1985.

16. Kieras, David E., and Bovair, Susan, "The Acquisition of
Procedures From Text: A Production-System Analysis of
Transfer of Training," Journal of Memory and Language,
Vol 25, 1986.

17. Kitajima, Muneo, "A Formal Representation System for the
Human-Computer Interaction Process," International
Journal of Man-Machine Interface, Vol 30, No 6.

18. Lewis, E., "Using the 'Thinking Aloud' Method in
Cognitive Interface Design," Lecture 28, Ann Arbor,
Michigan: The University of Michigan Chrysler Center for
Continuing Engineering Education, 1982.

19. Lewis, Clayton, and Gould, John D., "Designing for
Usability: Key Principles and What Designers Think,"
Communications of the ACM, Vol 28, No 3, March 1985.

20. Margono, S., and Shneiderman, Ben, "A Study of File
Manipulation by Novices Using Commands vs. Direct
Manipulation," 26th Annual Technical Symposium, June
1987.

21. Polson, Peter G., and Kieras, David E., "A Quantitative
Model of the Learning and Performance of Text Editing
Knowledge," CHI '85 Proceedings, April 1985.

67

22. Polson, Peter G., Muncher, Elizabeth, and Engelbeck,
George, "A Test of a Common Elements Theory of Transfer,"
CHI '86 Proceedings, April 1986.

23. Te'eni, Dov, "Direct Manipulation as a Source of
Cognitive Feedback: A Human-Computer Experiment with a
Judgement Task," International Journal of Man-Machine
Interface, July 1990.

24. Wright, Peter C., and Monk, Andrew F., "The Use of Think-
Aloud Evaluation Methods in Design," SIGCHI Bulletin,
January 1991.

68

APPENDIX A

COMMAND LANGUAGE INTERFACE

YOUR NAME:

SMC NO:

I. INTRODUCTION

The exercise you are about to participate in involves

operating and evaluating a recently-developed computer file

management system. You will be asked to read a short

description of file management, followed by instructions for

each file management operation. You will then perform a

series of tasks that involve using the operations you have

learned.

PRIVACY ACT

The information accompanying this experiment will be used for
data collection and correlation purposes only. Information
provided is voluntary.

69

II. FILE MANAGEMENT SYSTEM

A. OPERATING SYSTEM

An operating system is the software program that makes

the hardware useable. The operating system can accomplish

many functions such as communicating between the user and the

computer (known as the user interface), sharing hardware among

users, allowing users to share data among themselves, and many

other functions.

An operating system's primary duty is to manage various

files. Before we go into the details of files, it is

important to understand the structure and organization of

files.

B. DIRECTORIES AND FILES

A software program usually consists of several files.

These files work together to produce the program that the user

sees and interacts with on the screen. A directory contains

all of the files used for a given program. For instance, all

the files that operate the popular word processing program,

WordPerfect 5.1, might be located in a directory called WP51.

It is also possible (and highly recommended) to have

70

subdirectories within a directory to segregate your files

further. For instance, in the WP51 directory you might have

a subdirectory titled WORK for all the files relating to your

work and one titled THESIS for all the files relating to your

thesis.

Figure 1 shows the relationship of this WP51 directory to

its subdirectories and files, and also its relationship with

the top-level Root directory, often represented by a slash

(\). Two other directories at the same level as WP51 (here

called DOS and HG) also are shown, along with their files.

mK

L L

V JIRCIVRY DIRECTOrY RUFILES

Figure 1. Relationships of the WP51 Directory
with other Directories and Files.

71

It is often necessary to copy or move a file from one

directory to another. The operating system must provide

methods to move these files. For example, suppose you wrote

a paper for a National Security class titled The Middle East

and stored this file in the WORK directory under WP51. Later

in the year you decide to use this paper in your thesis and

need to transfer the file to the THESIS subdirectory. Some

form of move or copy command would allow you to transfer this

file. Additionally, you may want to change the file name to

Chapter II. Again the operating system interface must provide

a means of doing so.

As mentioned earlier, directories contain related files.

The operating system interface also must provide a means to

manage directories. That is, commands such as create

directory and delete directory are needed.

III. OPERATING SYSTEM INTERFACE

The experimental operating system interface you will be

working with is a Command Language Interface, Figure 2. It

uses specific commands to perform an operation. The interface

72

contains three windows: Directory, File and Command windows.

A. Windows

I. Directory Window

The Directory Window provides a directory tree of all the

subdirectories contained in a specified directory. If

insufficient space is provided in the window for the entire

directory tree, the user will be prompted to press M for the

remainder of the tree.

2. File Window

The File Window contains a listing of all the files in a

specified directory. The name of the directory appears in the

label for the File Window. If insufficient space is provided

in the window for all the files, the user will be prompted to

press M for additional files.

73

CCUMAJI

Figure 2. The Conuand Language
Interface Windows.

3. Command Window

The Comand Win.cw allows the user to input specific

commands to -ae interface. Each command has a specific ntax

associated with it. If the command is typed incorrectly or

missing arguments, an error message will appear below the

command line indicating the reason for the error.

74

B. Commands

All commands available for the Command Language Interface

are identified below. Commands must be typed in lower case,

the <> indicates that the user provides a file name or

directory name. The <> are not to be typed. The path for a

file or directory is given using the \ and must be included in

the command. If a directory is not specified, the interface

will assume the root "\" directory is being referenced.

1. Copy File

A file can be copied from one directory to another using

the following command:

copyfile <directory\filename> to

<directory\filename>

with the user providing the path for the existing file and new

file.

2. Create Directory

A new directory can be created using the following

command:

createdir <directory\new directory name>

75

with the user pcoviding the path and name for the new

directory.

3. Create File

A new file can be created using the following command:

createfile <directory\new file name>

with the user providing the path and name for the new file.

4. Directory Tree

A directory tree of a specified directory can be

displayed on the screen using the following command:

dirtree <directory>

with the user providing the path of the directory to be

displayed.

5. Help

The help command provides the user information regarding

the interface and any commind. At the command line the user

can type help for general information or the following for

more specific information about a command:

help <command>

6. Listing Directory Files

76

The files for a specific directory can be displayed using

the following command:

listfiles <directory>

with the user providing the path for the directory to be

displayed.

7. Remove Directory

When a directory does not contain files nor

subdirectories, and is no longer needed, it can be deleted

using the following command:

removedir <directory>

with the user providing the path of the directory to be

deleted.

8. Remove File

A file can be deleted from a directory using the

following command:

removefile <directory\filename>

with the user providing the path of the file to be deleted.

9. Rename a File

A file can be renamed using the following command:

renamefile <directory\filename> to <directo-y\new

filename>

77

with the user providing the paths for the old and new file

names.

10. Sort Files

The files in the file window can be sorted by name, date

or size using the following command:

sortfile <directory> by date

sortfile <directory> by size

sortfile <directory> by name

with the user providing the path for the directory to be

sorted.

78

IV. YOUR TASK

You are participating in an experiment that is being

conducted to evaluate the interface of a recently developed

computer file management system. The purpcse of the

experiment is to determine the strengths and weaknesses of the

interface. You must perform a series of tasks using the

interface. As you perform these tasks, you will be required

to "think aloud"--that is, you will say aloud what you are

thinking about, any questions that you may have concerning the

task, or anything related to the system that may cause you

confusion. Throughout this period, your thoughts will be

recorded for later analysis. It is important to remember that

it is not your thought process that is being evaluated, but

rather the type of concerns you encounter while attempting to

learn and perform tasks using the file management system

provided. Although you have been asked to verbalize your

questions as they arise (and these question are vital to the

final evaluation of the system), it is important that you

realize that your questions probably will not be answered.

Finally, if you become absorbed in the performance of the task

and therefore stop verbalizing your thoughts, the observer

will provide prompting.

*** STOP ***

THE OBSERVER WILL ASSIST YOU IN PROCEEDING WITH THE EXPERIMENT

79

V. EXPERIMENT

Complete the following operations using the procedures

you have read about. Use the help screen as needed. Work at

a normal pace and as accurately as possible.

1. Find the file called plane and copy it to a file called
aircraft within the same directory.

2. Create a file called car in the ground directory and sort
ground files by file size.

3. Delete the planes directory.

4. Find the largest file of all the directories and rename
the file to large.fil.

5. The system supervisor informs us that the ground
directory is a misnomer and should really be called the
fleet directory. Also, having a ground directory in the
system causes confusion among the staff. Rectify the
situation.

8o

APPENDIX B

DIRECT MANIPULATION INTERFACE

YOUR NAME:

SMC NO:

I. INTRODUCTION

The exercise you are about to participate in involves

operating and evaluating a recently-developed computer file

management system. You will be asked to read a short

description of file management, followed by instructions for

each file management operation. You will then perform a

series of tasks that involve using the operations you have

learned.

PRIVACY ACT

The information accompanying this experiment will be used for
data collection and correlation purposes only. Information
provided is voluntary.

81

II. FILE MANAGEMENT SYSTEM

B. OPERATING SYSTEM

An operating system is the software program that makes

the hardware useable. The operating system can accomplish

many functions such as communicating between the user and the

computer (known as the user interface), sharing hardware among

users, allowing users to share data among themselves, and many

other functions.

An operating system's primary duty is to manage various

files. Before we go into the details of files, it is

important to understand the structure and organization of

files.

C. DIRECTORIES AND FILES

A software program usually conzists of several files.

These files work together to produce the program that the user

sees and interacts with on the screen. A directory containz

all of the files used for a given program. For instance, all

the files that operate the popular word processing program,

WordPerfect 5.1, might be located in a directory called WP51.

It is also possible (and highly recommended) to have

62

subdirectories within a directory to segregate your files

further. For instance, in the WP51 directory you might have

a subdirectory titled WORK for all the files relating to your

work and one titled THESIS for all the tiles relating to your

thesis.

Figure 1 shows the relationship of this WP51 directory to

its subdirectories and files, and also its relationship with

the top-level Root directory, often represented by a slash

(\). Two other directories at the same level as WP51 (here

called DOS and HG) also are shown, along with their files.

I L

LL

Figure 1. Relationships of the
WP51 Directory with
other Directories and Files.

83

It is often necessary to copy or move a file from one

directory to another. The operating system must provide

methods to move these files. For example, suppose you wrote

a paper for a National Security class titled The Middle East

and stored this file in the WORK directory under WP51. Later

in the year you decide to use this paper in your thesis and

need to transfer the file to the THESIS subdirectory. Some

form of move or copy command would allow you to transfer this

file. Additionally. -u may want to change the file name to

Chapter II. Again , perating system interface must provide

a means of doing so.

As mentioned earlier, directories contain related files.

The operating system interface also must provide a means to

manage directories. That is, commands such as create

directory and delete directory are needed.

III. OPERATING SYSTEM INTERFACE

The experimental operating system interface you will be

working with is called a Direct Manipulation Interface. It

uses the mouse device to "click" on to various icons,

directory names, or file names on the screen. An icon is a

graphical representation of an object or an operation. Once

84

activated, the icon carries out a specific function or

operation, such as copying a file from one directory to

another.

A. Mouse

The mouse (Figure 2) is the only input device you will be

using for this experiment. The keyboard will only be

operational when entering your name and SMC at the beginning

of the experiment.

Hold the mouse in the right hand (if right handed, left

hand if left handed) so that the cord and buttons are at the

top. Plact your index and middle fingers lightly over the

mouse buttons. Gently guide the movement of the mouse with

the hand.

Normally, the mouse is represented as an arrow, or

cursor, on the screen which moves as you move the mouse. When

the system is performing an operation that takes longer than

one second, the cursor will appear as an hour glass to

indicate that the operation will take time. The cursor is not

functional in the hour glass mode.

Gently press or "click" the left button to select the

item on the screen superimposed by the arrow or cursor. Click

85

the right button to call up a menu that describes operations

you can do in a given window. Each window has a menu assigned

to it. Most of the window menus are not operational.

However, the help, sort, tree, and error windows do have

operational menus.

Figure 2. Mouse Control Device

B. Windows

The Direct Manipulation Interface consi-ts of five

windows (Figure 3). These are (1) Directory Window, (2) File

Window, (3) File Sort Window, (4) New Name Window and (5) Icon

Window. Each window has a specific function and interacts

with the other windows by use of mouse operations.

Additionally, the Help and Tree windows will pop up onto the

86

screen when the icon that represents one of them is selected.

All windows have similar characteristics. The Top Pane

is the main window that includes all other windows and

encompasses the entire screen. The label of the top pane

contains the name of the interface or the name of a selected

directory. The Directory, File and New Name windows all

operate in a similar manner where the user selects an item.

The selected item will appear highlighted. Due

to the limited size of the windows, not all files, directories

or new names may fit in the window at one time. The window

operations provide the ability to scroll the window. Scroll

a window by pressing and holding the right mouse button

(cursor changes to a four directional arrow) in the window to

be scrolled. Move the cursor out of the window in the

direction of the additional names. The scroll bar to the

right of the window shows the status of the scrolling with

respect to the total list. The scroll bar only appears during

the scrolling operation.

1. Directory Window

The Directory window contains a list of all the

directories on the disk in alphabetical order. The

directories are indented to reflect the hierarchical or tree

87

I NEW
FILESORT NAME

WHNDOW WIND

DIRECTORY i

WNDOW i

ICON

WINDOW

FILE
WINDOW

Figure 3. The Direct Manipulation Interface Top Pane
and Component Windows

structure. For example, each subdirectory will be indented

one space from the parent directory.

2. File Window

The name of the selected directory appears in reverse

video (black background, white lettering) in the Directory

window and the names of all files contained in the directory

are displayed in the File window. Files listed in the File

88

window are in alphabetical order. All operations on files

will be carried out using the file window.

3. File Sort Window

The File Sort window contains the names of all the files

listed in the file window, plus additional information about

these files. The File Sort window has two parts, a label and

a text portion. The label, i.e., Files Sorted by Name,

contains a menu which allows the files to be sorted by name,

date, or size. Items can be selected from this menu by

clicking the right mouse button when the arrow is over the

label and selecting with the left mouse button, the desired

sorting method. The File Sort window will then contain the

files of the selected directory sorted by the specified method

(see Figure 4).

4. New Name Window

The New Name window contains a list of all the names

needed for new files, renamed files, and directories. The new

name must be selected before an icon is selected to complete

an operation on a file, if that operation involves naming the

file. The system removes the selected new name after it has

been used.

89

b. Copy File Icon

The Copy File icon copies a selected file to the selected

directory using the selected name in the New Name window.

c. Rename File Icon

The Rename File icon renames a selected file to the

selected name in the New Name window.

d. Delete File Icon

The Delete File icon deletes the selected file from the

selected directory.

e. Create Directory Icon

The Create Directory icon creates a new subdirectory

under the selected directory using the selected name in the

New Name window.

f. Directory Tree

The Directory Tree icon displays a graphical aepiction of

the directories on the drive.

g. Delete Directory

The Delete Directory icon deletes the selected directory

from the disk. The selected directory can not contain files

nor subdirectories.

91

h. Help

The Help icon displays the help window described below.

6. Prompter Window

When you are performing a file or directory operation a

"prompter window" will appear. This window allows you to

confirm or cancel the operation. When this window appears,

click the right mouse button while the arrow is in the white

portion of the window (suggested file or directory name) to

call up the menu. Then select the "accept" or "cancel" option

with the left mouse button. A prompter window also will

appear when you attempt to conduct an operation without having

specified all the necessary information. The needed

information will appear in the white portion of the window.

Remove the prompter window by selecting "cancel" from the

prompter menu.

7. Help Window

The Help window provides information on window

operations, icons, and window locations. The Help window can

be displayed by selecting the Help icon. Hold down the left

mouse button until a prompt appears for the left corner of the

help window. Move the pop-up window corner to the upper left

corner of the screen and release the mouse button. The lower

92

right corner of the window will appear and can be repositioned

with the mouse. Click the left mouse button when the size of

the window is at least five inches square.

The help commands appear in alphabetical order. When a

command is selected, a description of the command wil' be

provided in the right pane (text pane) of the window. The

command list and text pane can be scrolled in the manner

discussed earlier, press the right mouse button and drag the

cursor out of the pane in the direction of the unseen text.

8. Error Windows

Error windows can appear either as a Prompter window or

as a Pop-up window. A Prompter window will be a small window

with a short message. Selecting an icon without all the

necessary information specified will cause it to appear. It

can be removed by (1) selecting the right mouse button when

the cursor is located in the white portion of the prompter

(area of short message) to obtain the menu options and then

(2) selecting the "cancel" option.

If you attempt an operation that the operating system

does not allow, an Error Pop-up window will appear in the

middle of the screen. The Label, located at the top, will

93

contain the error message. The remaining text portion of the

window may be confusing and not necessary for you to

understand. To remove the window, use the mouse's left button

and cursor to select a point outside the window, or select the

menu with the right mouse button in the Label and then the

"close" option with the left mouse button.

9. Directory Tree

A Directory Tree is helpful for seeing the "whole

picture" of directories and subdirectories. Similar to the

Directory window, a subdirectory will branch off from its

parent directory. The Directory Tree window can be displayed

by selecting the Tree icon. Hold down the left mouse button

until a prompt appears for the left corner of the Tree window.

Move the pop-up window corner to the upper left corner of the

screen and release the mouse button. The lower right corner

of the window will appear and can be repositioned with the

mouse. Click the left mouse button when the size of the

window is approximately five to six inches square.

94

II. YOUR TASK

You are participating in an experiment that is being

conducted to evaluate the interface of a recently developed

computer file management system. The purpose of the

experiment is to determine the strengths and weaknesses of the

interface. You must perform a series of tasks using the

interface. As you perform these tasks, you will be required

to "think aloud"--that is, you will say aloud what you are

thinking about, any questions that you may have concerning the

task, or anything related to the system that may cause you

confusion. Throughout this period, your thoughts will be

recorded for later analysis. It is important to remember that

it is not your thought process that is being evaluated, but

rather the type of concerns you encounter while attempting to

learn and perform tasks using the file management system

provided. Although you have been asked to verbalize your

questions as they arise (and these question are vital to the

final evaluation of the system), it is important that you

realize that your questions probably will not be answered.

Finally, if you become absorbed in the performance of the task

and therefore stop verbalizing your thoughts, the observer

will provide prompting.

*** STOP ***

THE OBSERVER WILL ASSIST YOU IN PROCEEDING WITH THE EXPERIMENT

95

V. EXPERIMENT

Complete the following operations using the procedures

you have read about. Use the help screen as needed. Work at

a normal pace and as accurately as possible.

.. Find the file called plane and copy it to a file called
aircraft within the same directory.

2. Create a file called car in the ground directory and sort
ground files by file size.

3. Delete the planes directory.

4. Find the largest file of all the directories and rename
the file to large.fil.

5. The system supervisor informs us that the ground
directory is a misnomer and should really be called the
fleet directory. Also, having a ground directory in the
system causes confusion among the staff. Rectify the
situation.

96

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Kishore Sengupta, Code AS/SE 2
Naval Postgraduate School
Monterey, California 93943

4. Tung Bui, Code AS/BD 2
Naval Postgraduate School
Monterey, California 93943

5. Barbara Treharne 2
HQ's, U.S. Military Academy
West Point, New York 10996

97

